
www.helsinki.fi/yliopistoPython for geo-people

Class overview today - September 7, 2022

• A taste of Python

• Introductions and practical course information

• Elements of a computer and computer programs

• An introduction to our course computing environment

• A taste of Python

2

Python for geo-people www.helsinki.fi/yliopisto

Geo-Python
A taste of Python

Lecturer: David Whipp
david.whipp@helsinki.fi

7.9.2022

3

mailto:david.whipp@helsinki.fi

www.helsinki.fi/yliopistoPython for geo-people

Who are we?

• Lecturers

• Dave Whipp - Geo-Python

• Christoph Fink - AutoGIS

• Assistants

• Mikko Kangasmaa

• Justus Poutanen

4

www.helsinki.fi/yliopistoPython for geo-people

Course websites

• Geo-Python/AutoGIS 1 (Period I)
https://geo-python.github.io

• AutoGIS 2 (Period II)
https://autogis.github.io

5

https://geo-python.github.io
https://autogis.github.io/

www.helsinki.fi/yliopistoPython for geo-people

Class meetings in Period I

• On-site lessons

• Wednesdays 9:15-12:00

• Optional work sessions

• Thursdays 12:15-16:00

• Fridays 10:15-14:00

• You can feel free to attend either work session (or both)

6

“AUTOGIS”

PERIOD 1:
• GEOG-329-1, Automating GIS-processes 1, Geo-Python
• Introduction to programming, data analysis and visualization

PERIOD 2:
• GEOG-329-2, Automating GIS-processes 2, Geography
• Spatial data management, analysis and visualization

5 + 5 ECTS

www.helsinki.fi/yliopistoPython for geo-people

Who are you?

• We’d like to know a bit about who you are, and ask that you
direct your web browser or phone to a real-time poll at
https://geo-python.github.io/poll

8

https://geo-python.github.io/poll

www.helsinki.fi/yliopistoPython for geo-people

Goals of this part of the course

There are basically three goals in this part of the course

1. Introduce the Python programming language

2. Develop basic programming skills

3. Discuss essential (good) programming practices needed by
young scientists

9

www.helsinki.fi/yliopistoPython for geo-people

Some motivation

10

www.helsinki.fi/yliopistoPython for geo-people

Goals of this lecture

• Provide an overview of basic computing practices, and why
you should learn them

• Define computers and programming languages, and how
they operate

• Look at the components of a computer program and a
strategy for writing your own code

11

www.helsinki.fi/yliopistoPython for geo-people

Learning to program

• A significant part of this course will be development of basic
programming skills that will help you write and use simple
numerical models

• I know you’re not computer scientists - we aren’t either

• Our goal is take small steps to learn together

• Do you really need to know how to program? Yes.

• You might not be a superstar, but learning to write
simple codes can be very useful

12

www.helsinki.fi/yliopistoPython for geo-people

Why learn to program?

• Geology and geography are becoming increasingly quantitative
and basic programming skills are one of the fundamental skills
that will help you be a better scientist

13

www.helsinki.fi/yliopistoPython for geo-people

Why learn to program?

• You can extend existing software by developing your own
solutions when solutions do not exist or are inefficient

• Many software packages offer the ability to extend their
capabilities by adding your own short programs (e.g.,
ArcGIS, ParaView, Google Earth, etc.)

14

www.helsinki.fi/yliopistoPython for geo-people

You can interact with GIS software using Python

15

Python console in QGIS

www.helsinki.fi/yliopistoPython for geo-people

Why learn to program?

• Believe it or not, programming is fun! It
involves

• Breaking complex problems down into
simpler pieces

• Developing a strategy for solving the
problem

• Testing your solution

• All of this can be exciting and rewarding
(when the code works…)

16

www.helsinki.fi/yliopistoPython for geo-people

The scientific method…
…and how programming can make you a better scientist

1. Define a question

2. Gather information and resources (observe)

3. Form an explanatory hypothesis

4. Test the hypothesis by performing an experiment and collecting
data in a reproducible manner

5. Analyze the data

6. Interpret the data and draw conclusions that serve as a starting
point for new hypothesis

7. Publish results

8. Retest (frequently done by other scientists)

17

www.helsinki.fi/yliopistoPython for geo-people

Learning to program can help us…

1. Define a question

2. Gather information and resources (observe)

3. Form an explanatory hypothesis

4. Test the hypothesis by performing an experiment and
collecting data in a reproducible manner

5. Analyze the data

6. Interpret the data and draw conclusions that serve as a starting
point for new hypothesis

7. Publish results

8. Retest (frequently done by other scientists)

18

www.helsinki.fi/yliopistoPython for geo-people

Good programming practices can help us…

1. Define a question

2. Gather information and resources (observe)

3. Form an explanatory hypothesis

4. Test the hypothesis by performing an experiment and collecting
data in a reproducible manner

5. Analyze the data

6. Interpret the data and draw conclusions that serve as a starting
point for new hypothesis

7. Publish results

8. Retest (frequently done by other scientists)

19

www.helsinki.fi/yliopistoPython for geo-people

What is a computer?

20

www.helsinki.fi/yliopistoPython for geo-people

What is a computer?

• Let’s crowdsource: https://geo-python.github.io/poll

• Add your thoughts on what comprises a computer

• Vote for options you support

21

https://geo-python.github.io/poll

www.helsinki.fi/yliopistoPython for geo-people

What is a computer?

22

• A computer is a machine that stores and manipulates
information under the control of a changeable program

Input
Devices

CPU

Secondary
Memory

Main
Memory

Output
Devices

Figure . : Functional View of a Computer.

tional science (using powerful computers to model scientific data), databases,
software engineering, web and multimedia design, management information
systems, and computer security. Wherever computing is done, the skills and
knowledge of computer science are being applied.

You don’t have to know all the details of how a computer works to be a successful
programmer, but understanding the underlying principles will help you master
the steps we go through to put our programs into action. It’s a bit like driving a
car. Knowing a little about internal combustion engines helps to explain why you
have to do things like fill the gas tank, start the engine, step on the accelerator,
etc. You could learn to drive by just memorizing what to do, but a little more
knowledge makes the whole process much more understandable. Let’s take a
moment to “look under the hood” of your computer.

Although different computers can vary significantly in specific details, at a
higher level all modern digital computers are remarkably similar. Figure .
shows a functional view of a computer. The central processing unit (CPU) is the
“brain” of the machine. This is where all the basic operations of the computer are
carried out. The CPU can perform simple arithmetic operations like adding two
numbers and can also do logical operations like testing to see if two numbers
are equal.

The memory stores programs and data. The CPU can only directly access
information that is stored in main memory (called RAM for Random Access Mem-
ory). Main memory is fast, but it is also volatile. That is, when the power is

Figure 1.1, Zelle, 2010

www.helsinki.fi/yliopistoPython for geo-people

What is a computer?

23

• A computer is a machine that stores and manipulates
information under the control of a changeable program

• Information can be input, modified into a new/useful form
and output for our interpretation

Input
Devices

CPU

Secondary
Memory

Main
Memory

Output
Devices

Figure . : Functional View of a Computer.

tional science (using powerful computers to model scientific data), databases,
software engineering, web and multimedia design, management information
systems, and computer security. Wherever computing is done, the skills and
knowledge of computer science are being applied.

You don’t have to know all the details of how a computer works to be a successful
programmer, but understanding the underlying principles will help you master
the steps we go through to put our programs into action. It’s a bit like driving a
car. Knowing a little about internal combustion engines helps to explain why you
have to do things like fill the gas tank, start the engine, step on the accelerator,
etc. You could learn to drive by just memorizing what to do, but a little more
knowledge makes the whole process much more understandable. Let’s take a
moment to “look under the hood” of your computer.

Although different computers can vary significantly in specific details, at a
higher level all modern digital computers are remarkably similar. Figure .
shows a functional view of a computer. The central processing unit (CPU) is the
“brain” of the machine. This is where all the basic operations of the computer are
carried out. The CPU can perform simple arithmetic operations like adding two
numbers and can also do logical operations like testing to see if two numbers
are equal.

The memory stores programs and data. The CPU can only directly access
information that is stored in main memory (called RAM for Random Access Mem-
ory). Main memory is fast, but it is also volatile. That is, when the power is

Figure 1.1, Zelle, 2010

www.helsinki.fi/yliopistoPython for geo-people

What is a computer?

24

• A computer is a machine that stores and manipulates
information under the control of a changeable program

• Controlled by a computer program that can be modified

Input
Devices

CPU

Secondary
Memory

Main
Memory

Output
Devices

Figure . : Functional View of a Computer.

tional science (using powerful computers to model scientific data), databases,
software engineering, web and multimedia design, management information
systems, and computer security. Wherever computing is done, the skills and
knowledge of computer science are being applied.

You don’t have to know all the details of how a computer works to be a successful
programmer, but understanding the underlying principles will help you master
the steps we go through to put our programs into action. It’s a bit like driving a
car. Knowing a little about internal combustion engines helps to explain why you
have to do things like fill the gas tank, start the engine, step on the accelerator,
etc. You could learn to drive by just memorizing what to do, but a little more
knowledge makes the whole process much more understandable. Let’s take a
moment to “look under the hood” of your computer.

Although different computers can vary significantly in specific details, at a
higher level all modern digital computers are remarkably similar. Figure .
shows a functional view of a computer. The central processing unit (CPU) is the
“brain” of the machine. This is where all the basic operations of the computer are
carried out. The CPU can perform simple arithmetic operations like adding two
numbers and can also do logical operations like testing to see if two numbers
are equal.

The memory stores programs and data. The CPU can only directly access
information that is stored in main memory (called RAM for Random Access Mem-
ory). Main memory is fast, but it is also volatile. That is, when the power is

Figure 1.1, Zelle, 2010

www.helsinki.fi/yliopistoPython for geo-people

What are computers good at?

• Well-defined, clear tasks

• Add 2 + 2 and return the
answer

• Data storage/manipulation

• Repetitive calculations

• Processing data or instructions

25

>>> print(2 + 2)
4

>>> print(“2 + 2 =“,2 + 2)
2 + 2 = 4

www.helsinki.fi/yliopistoPython for geo-people

What are computers good at?

• Well-defined, clear tasks

• Add 2 + 2 and return the
answer

• Data storage/manipulation

• Repetitive calculations

• Processing data or instructions

26

>>> print(2 + 2)
4

>>> print(“2 + 2 =“,2 + 2)
2 + 2 = 4

Python prompt Print function

Returned value

www.helsinki.fi/yliopistoPython for geo-people

What aren’t computers good at?

• Abstract or poorly defined tasks

• Calculate pi

27

www.helsinki.fi/yliopistoPython for geo-people

What aren’t computers good at?

• Abstract or poorly defined tasks

• Calculate pi

28

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899  
 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502  
 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165  
 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817  
 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094  
 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724  
 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277  
 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091  
 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960  
 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859  
 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083  
 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532  
 1712268066 1300192787 6611195909 2164201989

The first 1000 digits of pi

www.helsinki.fi/yliopistoPython for geo-people

What aren’t computers good at?

• Tasks that are not computable

• Computer, where are my car keys?

• Some problems simply cannot be solved, or require too
much computing power

29

Lumi supercomputer
~200,000 cores

www.lumi-supercomputer.eu/

www.helsinki.fi/yliopistoPython for geo-people

What is a program?

30

Define plot variables
misfit = NA_data[:,0]
var1 = NA_data[:,1]
var2 = NA_data[:,2]
var3 = NA_data[:,3]
clrmin = round(min(misfit),3)
clrmax = round(min(misfit),2)
trans = 0.75
ptsize = 40

Fortran punchcard

Python source code

www.helsinki.fi/yliopistoPython for geo-people

What is a program?

• A program is a detailed list
of step-by-step instructions
telling the computer exactly
what to do

• The program can be
changed to alter what the
computer will do when the
code is executed

• Software is another name
for a program

31

Define plot variables
misfit = NA_data[:,0]
var1 = NA_data[:,1]
var2 = NA_data[:,2]
var3 = NA_data[:,3]
clrmin = round(min(misfit),3)
clrmax = round(min(misfit),2)
trans = 0.75
ptsize = 40

Fortran punchcard

Python source code

www.helsinki.fi/yliopistoPython for geo-people

What is a programming language?

• A computer language is what we use to ‘talk’ to a computer

• Unfortunately, computers don’t yet understand our native
languages

• A programming language is like a code of instructions for the
computer to follow

• It is exact and unambiguous

• Every structure has a precise form (syntax) and a precise
meaning (semantics)

• Python is just one of many programming languages

32

www.helsinki.fi/yliopistoPython for geo-people

Developing a program

• Coming up with a specific list of instructions for the computer
to follow in order to accomplish a desired task is not easy

• The following list will serve us as a general software
development strategy

1. Analyze the problem

2. Determine specifications

3. Create a design

4. Implement the design

5. Test/debug the program

6. Maintain the program (if necessary)

33

www.helsinki.fi/yliopistoPython for geo-people

Let’s consider an example

• As an American, I was raised in a country that uses Fahrenheit
for temperatures

• 70°F is lovely

• 90°F is hot

• Water freezes at 32°F

• The problem here in Finland is that I don’t always know what I
should wear to work when I find weather reports with
temperatures in degrees Celsius

• I think a simple program could help

34

www.helsinki.fi/yliopistoPython for geo-people

Developing a program

1. Analyze the problem

• Before you can solve a problem, you must figure out exactly
what should be solved

2. Determine specifications

• Describe exactly what the program will do

• Don’t worry about how it will work. Determine the
input and output values and how they should interact in
the program

35

www.helsinki.fi/yliopistoPython for geo-people

Developing a program

1. Analyze the problem

• Before you can solve a problem, you must figure out exactly
what should be solved

2. Determine specifications

• Describe exactly what the program will do

• Don’t worry about how it will work. Determine the
input and output values and how they should interact in
the program

36

www.helsinki.fi/yliopistoPython for geo-people

Developing a program

3. Create a design

• What is the overall structure of the program? How will it
work?

• It is often helpful to write out the code operation in
pseudocode, precise English (or Finnish) describing the
program. Be specific!

4. Implement the design

• If you’ve done a good job with the previous steps, this
should be fairly straightforward. Take your pseudocode and
‘translate’ it into Python

37

www.helsinki.fi/yliopistoPython for geo-people

Developing a program

3. Create a design

• What is the overall structure of the program? How will it
work?

• It is often helpful to write out the code operation in
pseudocode, precise English (or Finnish) describing the
program. Be specific!

4. Implement the design

• If you’ve done a good job with the previous steps, this
should be fairly straightforward. Take your pseudocode and
‘translate’ it into Python

38

www.helsinki.fi/yliopistoPython for geo-people

Developing a program

5. Test/debug the program

• Now you can put your new Python code to the test
(literally) by running it to see whether it reproduces the
expected values

• For any test, you should know the correct values in
advance of running your code. How else can you confirm
it works???

6. Maintain the program

• If you’ve written something that will be shared by other
users, a helpful programmer will continue to add features
that are requested by the users

39

www.helsinki.fi/yliopistoPython for geo-people

Developing a program

5. Test/debug the program

• Now you can put your new Python code to the test
(literally) by running it to see whether it reproduces the
expected values

• For any test, you should know the correct values in
advance of running your code. How else can you confirm
it works???

6. Maintain the program

• If you’ve written something that will be shared by other
users, a helpful programmer will continue to add features
that are requested by the users

40

www.helsinki.fi/yliopistoPython for geo-people

Recap

• What is a computer?

• What is a program?

• What are some of the steps in developing a program?

41

www.helsinki.fi/yliopistoPython for geo-people

Recap

• What is a computer?

• What is a program?

• What are some of the steps in developing a program?

42

www.helsinki.fi/yliopistoPython for geo-people

Recap

• What is a computer?

• What is a program?

• What are some of the steps in developing a program?

43

www.helsinki.fi/yliopistoPython for geo-people

References

Zelle, J. M. (2010). Python programming: an introduction to computer science (2nd ed.). Franklin, Beedle &
Associates, Inc.

44

www.helsinki.fi/yliopistoPython for geo-people

Our first taste of Python

• Open a web browser and navigate to
https://geo-python.github.io/

45
Puupyton / Green tree python

https://geo-python.github.io/

