

• A taste of Python

- Introductions and practical course information
- Elements of a computer and computer programs
- An introduction to our course computing environment
- A taste of Python

Geo-Python A taste of Python

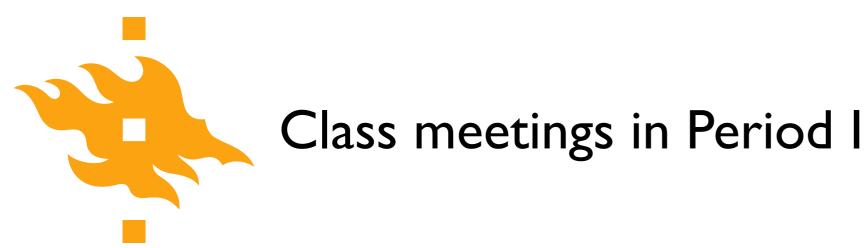
Lecturer: David Whipp david.whipp@helsinki.fi

4.9.2023

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Who are we?

- Lecturers
 - Dave Whipp Geo-Python
 - Kamyar Hasanzadeh AutoGIS


- Assistants
 - Mikko Kangasmaa
 - Aino Schulz
 - Veeti Sihvola
 - Leevi Tuikka

• Geo-Python/AutoGIS I (Period I) https://geo-python.github.io

• AutoGIS 2 (Period II) <u>https://autogis.github.io</u>

 Intro to Quantitative Geology (Period II) <u>https://introqg.github.io</u>

- On-site lessons
 - Mondays 9:15-12:00

- Optional work sessions
 - Thursdays 12:15-16:00
 - Fridays 10:15-14:00

• You can feel free to attend either work session (or both)

PERIOD 1:

- GEOG-329-1, Automating GIS-processes 1, Geo-Python
- Introduction to programming, data analysis and visualization

PERIOD 2:

- GEOG-329-2, Automating GIS-processes 2, Geography
- Spatial data management, analysis and visualization

5 + 5 ECTS

Introduction to Quantitative Geology

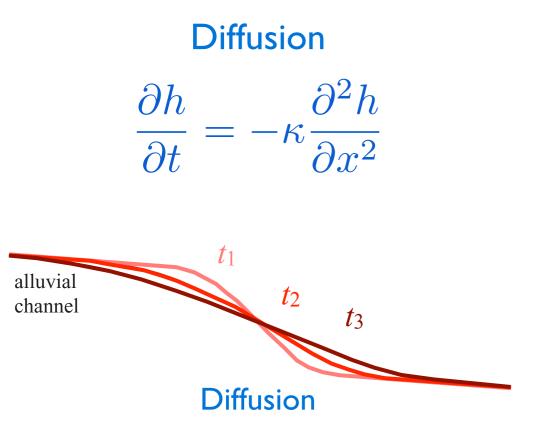
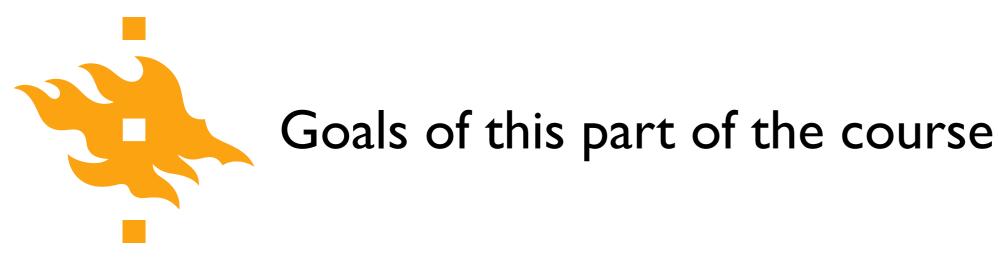



Fig. 1.7, Pelletier, 2008

- Introduction to Quantitative Geology (GEOM2021), Master's Program in Geology and Geophysics
- Basic geostatistics and applying numerical models written in Python to explore geochronological data and geological processes
- 5 ECTS

• We'd like to know a bit about who you are, and ask that you direct your web browser or phone to a real-time poll at https://geo-python.github.io/poll

There are basically three goals in this part of the course

- I. Introduce the **Python programming language**
- 2. Develop basic programming skills
- 3. Discuss essential (good) programming practices needed by young scientists

 See <u>https://geo-python-site.readthedocs.io/en/latest/lessons/L1/</u> motivation.html

 Provide an overview of basic computing practices, and why you should learn them

• Define computers and programming languages, and how they operate

• Look at the components of a **computer program** and a strategy for writing your own code

Learning to program

- A significant part of this course will be development of basic **programming skills** that will help you write and use simple numerical models
 - I know you're not computer scientists we aren't either
 - Our goal is take small steps to learn together
 - Do you really need to know how to program? Yes.
 - You might not be a superstar, but learning to write simple codes can be very useful

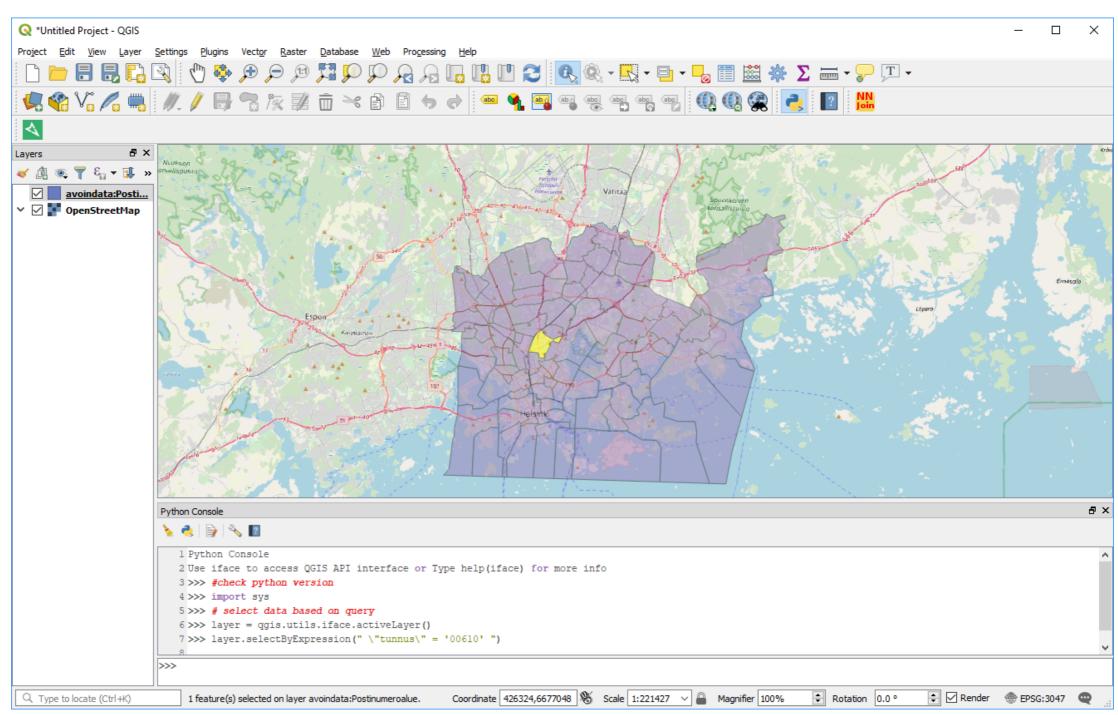
Why learn to program?

 Geology and geography are becoming increasingly quantitative and basic programming skills are one of the fundamental skills that will help you be a better scientist

Why learn to program?

in **[11]**:

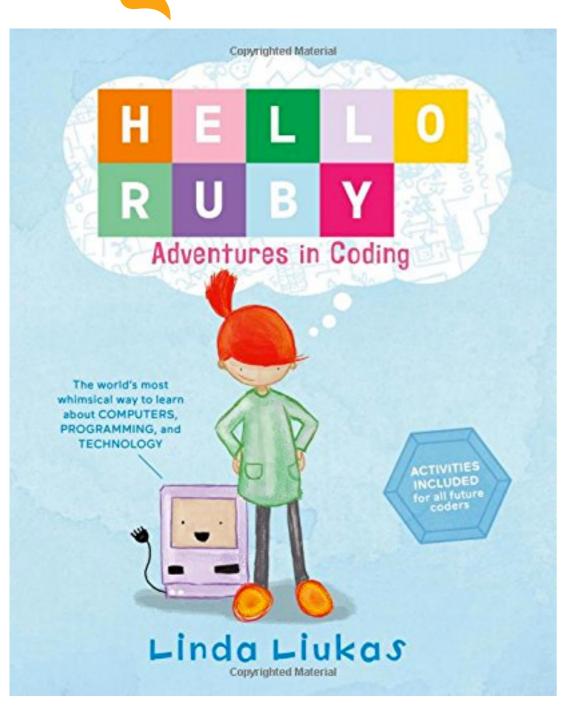
IPython: Users/whipp


- in [7]: average_geoscientist = 100
 - [8]: programming_factor = 1000
 - [9]: quantitative_geoscientist = average_geoscientist * programming_factor
 - [10]: quantitative_geoscientist > average_geoscientist [10]: True

- You can extend existing software by developing your own solutions when solutions do not exist or are inefficient
 - Many software packages offer the ability to extend their capabilities by adding your own short programs (e.g., ArcGIS, ParaView, Google Earth, etc.)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

You can interact with GIS software using Python



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Python for geo-people

Python console in QGIS

Why learn to program?

- Believe it or not, programming is fun! It involves
 - Breaking complex problems down into simpler pieces
 - Developing a strategy for solving the problem
 - Testing your solution

 All of this can be exciting and rewarding (when the code works...)

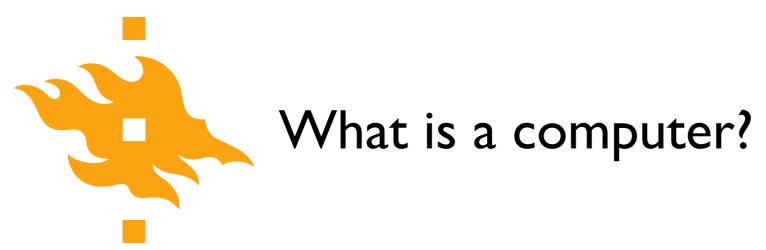
The scientific method...

...and how programming can make you a better scientist

- I. Define a question
- 2. Gather information and resources (observe)
- 3. Form an explanatory hypothesis
- 4. Test the hypothesis by performing an experiment and collecting data in a reproducible manner
- 5. Analyze the data
- 6. Interpret the data and draw conclusions that serve as a starting point for new hypothesis
- 7. Publish results
- 8. Retest (frequently done by other scientists)

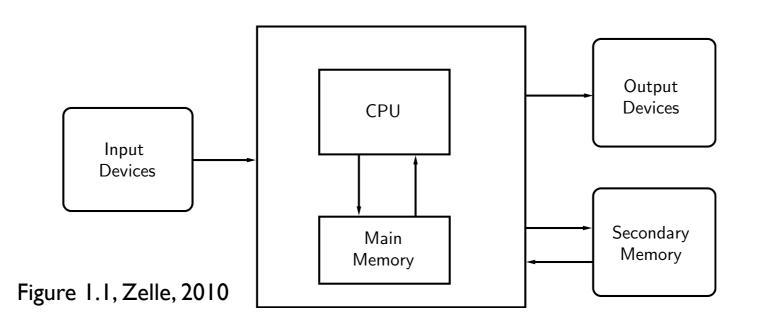
Learning to program can help us...

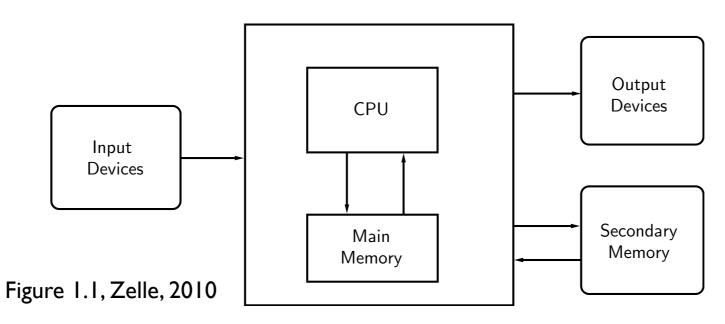
- I. Define a question
- 2. Gather information and resources (observe)
- 3. Form an explanatory hypothesis
- 4. Test the hypothesis by **performing an experiment and collecting data** in a reproducible manner
- 5. Analyze the data
- 6. Interpret the data and draw conclusions that serve as a starting point for new hypothesis
- 7. Publish results
- 8. Retest (frequently done by other scientists)

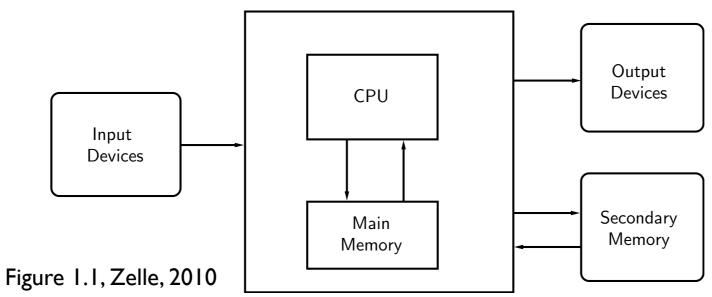


Good programming practices can help us...

- I. Define a question
- 2. Gather information and resources (observe)
- 3. Form an explanatory hypothesis
- 4. Test the hypothesis by performing an experiment and collecting data in a reproducible manner
- 5. Analyze the data
- 6. Interpret the data and draw conclusions that serve as a starting point for new hypothesis
- 7. Publish results


8. Retest (frequently done by other scientists)

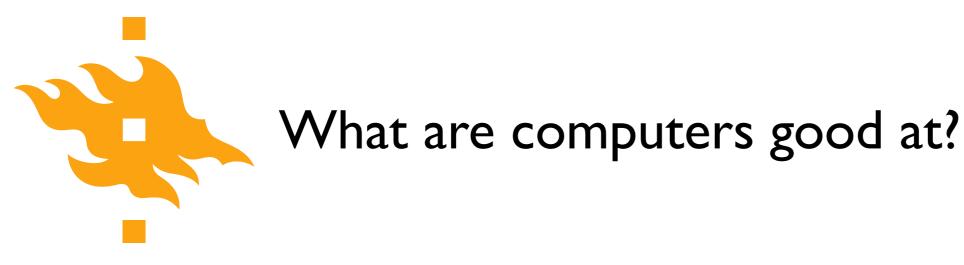

- Let's crowdsource: <u>https://geo-python.github.io/poll</u>
 - Add your thoughts on what comprises a computer
 - Vote for options you support

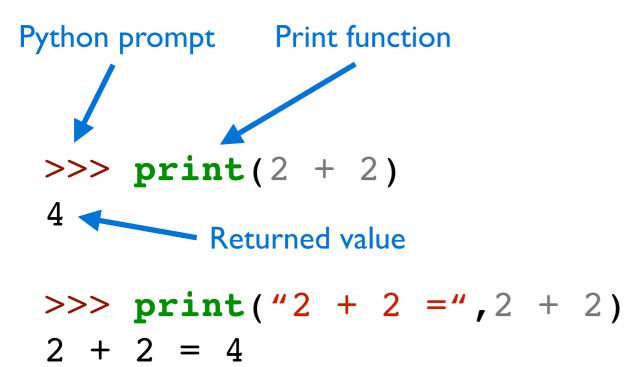

• A **computer** is a machine that stores and manipulates information under the control of a changeable program

- A computer is a machine that stores and manipulates information under the control of a changeable program
 - Information can be input, modified into a new/useful form and output for our interpretation

- A **computer** is a machine that stores and manipulates information under the control of a **changeable program**
 - Controlled by a computer program that can be modified

>>> **print**(2 + 2) 4


>>> **print("2 + 2 =",2 + 2)** 2 + 2 = 4


- Well-defined, clear tasks
 - Add 2 + 2 and return the answer

• Data storage/manipulation

• Repetitive calculations

• Processing data or instructions

- Well-defined, clear tasks
 - Add 2 + 2 and return the answer

• Data storage/manipulation

• Repetitive calculations

• Processing data or instructions

What aren't computers good at?

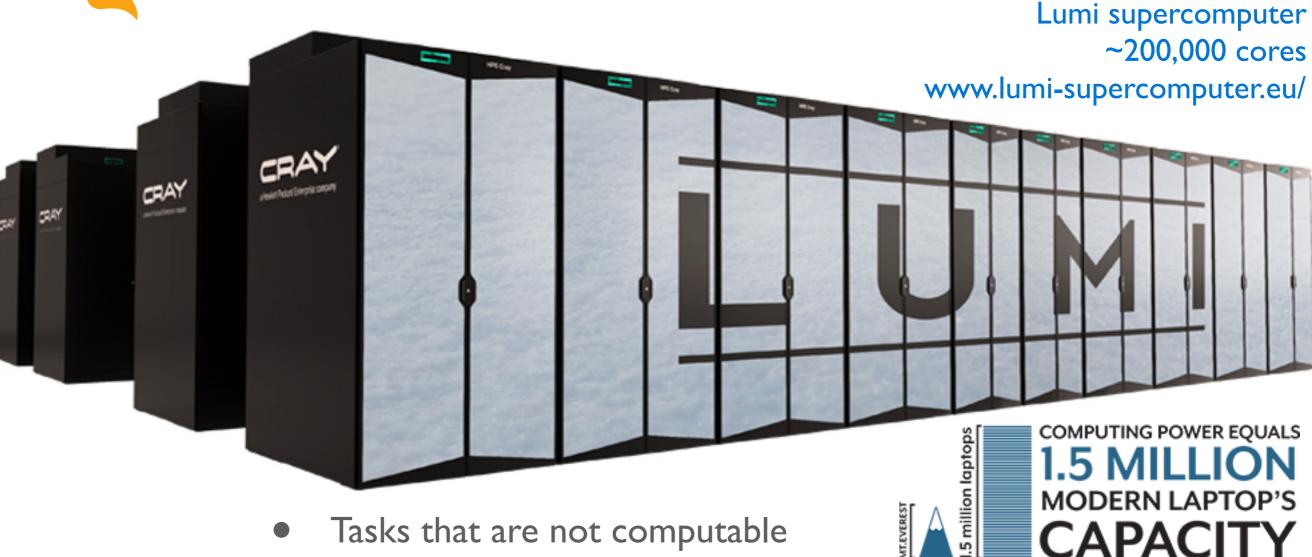
- Abstract or poorly defined tasks
 - Calculate pi

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Python for geo-people

What aren't computers good at?

3	.1415926535	8979323846	2643383279	5028841971	6939937510	5820974944	5923078164	0628620899
	8628034825	3421170679	8214808651	3282306647	0938446095	5058223172	5359408128	4811174502
	8410270193	8521105559	6446229489	5493038196	4428810975	6659334461	2847564823	3786783165
	2712019091	4564856692	3460348610	4543266482	1339360726	0249141273	7245870066	0631558817
	4881520920	9628292540	9171536436	7892590360	0113305305	4882046652	1384146951	9415116094
	3305727036	5759591953	0921861173	8193261179	3105118548	0744623799	6274956735	1885752724
	8912279381	8301194912	9833673362	4406566430	8602139494	6395224737	1907021798	6094370277
	0539217176	2931767523	8467481846	7669405132	0005681271	4526356082	7785771342	7577896091
	7363717872	1468440901	2249534301	4654958537	1050792279	6892589235	4201995611	2129021960
	8640344181	5981362977	4771309960	5187072113	4999999837	2978049951	0597317328	1609631859
	5024459455	3469083026	4252230825	3344685035	2619311881	7101000313	7838752886	5875332083
	8142061717	7669147303	5982534904	2875546873	1159562863	8823537875	9375195778	1857780532
	1712268066	1300192787	6611195909	2164201989				


The first 1000 digits of pi

- Abstract or poorly defined tasks
 - Calculate pi

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

What aren't computers good at?

- - Computer, where are my car keys?
 - Some problems simply cannot be solved, or require too much computing power

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Python for geo-people

www.helsinki.fi/yliopisto

UNIVERSITY OF HELSINKI

What is a program?

FOR			-	-	-	-			-		-	-	-		_	-	-	-		-	-		1.		-		_	-			1.		_				_					u	a	In		Ρ	u		-		-			
UMBER	THE	No. of Concession, Name											1			I	1	F	-0	E	917	F	A	N		37	r.	1	E	N	E	N	T		I														1	DET	(TIF	FICA	710	N
0.0	00	0	0	0	0 (0 (0	0 0	01	T	0	0 0	0	Π	Τ	0	0.0	1		1	0 0	0	0 0	0	0 0	I	1	0	0	0 0	0	0.0	T	0	0	0.1	T	0	0.0	0	0	0.0	0	0 0	0 (0	0 0	0	0:0	0 (0 (0 0	0	0
111	1 1	1	11	1	1.1	11	1	1	11	1	1	1	1	11	4 75	16	11 3	8 29	1	11	1 1	34 3	11	1	1 1	1	41 41	11	41	1 1	42.4	1 1	1	1 1	1	1	1 1	1	11	1 1	1	11	1	11	5 57	1	1 1	1	1 1	171	11	11	18.2	1
222	2 2	2	2 2	2	21	22	2	2 3	2 2	2	2	2 2	2	2 2	2 2	2	2 2	2.2	2	1	2 2	2	2 2	2	2 2	2	2	2 2	2	2 2	2	2 2	2	21	2	2	2 2	2	2 2	2	2	2 2	2	2 1	1 2	2	2 2	2	2 2	2 2	27	2 2	2	2
333	3 3	3	3	3	3 3	3 3	3	3	3[3	3	3.3	3	11	3	3	3 3	1	ľ	3 3	3	3	3	3	3 3	T	33	3	3	33	3	3 3	1	3 3	3	31	I	3	3 3	3	3	3 3	3	3 3	3	3	33	3	3 3	53	3.3	5 3	3	3
44	4 4	4	44	4	4 4	4	11	1	6 4	4	4	4.4	4	44	4	6	4 4	4	4	4.4	4	4.4	44	4	4 4	4	44	4		4.4	4	4.4	4	44	4	44	4	4	4 4	4	41	4 4	4	4 4	4	4	64	4	44	4	4 4	4	4	4
555	5 5	5	1	1	51	5	5	5 5	5 5	5	5	5 5	5	5 5	5	5	5	1000	5	5	5	5 5	51	1	51	5	5 5	5	5	1	1	5.[5	5	Ĩ.	5 5	5 5	5	5 5	5	5 9	5 5	5	5 5	5	5 1	5 5	5	5 5	5	5 5	5	5 5	C AND
566	6 6	6	6.6	6	6 6	6	6	6 6	5 6	6	6	6 6	6	6 6	6	6	6 6	6	6	5.6	1	6 6	5 6	6 1	6 6	6	6 [6	6	6 6	6 1	5 6	6 1	5 6	6	6 6	5 6	6	6.6	6	6 8	5 6	5	6 6	6	6 (5 6	6	5 5	6	6.6	5	6 (5
77	77	7	7.7	7	7	7	7	7.7	77	7	11	7	7	77	7	1	77	7	1	77	7	17	7	7	7.7	7	7 7	7	7	77	7	7 7	7	77	7	1	7	7	77	7	7 7	17	7	77	7	7	77	7	7 7	7	7 7	7	7 1	1
888	8 8	8	8.8	8	8 8	8	L	8 8	8 8	1	8	8 8	8	8	I	8	8 8	8	1	8 8	8	8 8	8 8	1	8 [1	8 8	8	8	8 8	1	3[1	8 8	8	8.8	3 [8	8 8	8	8 8	8 8	8	8 8	8	8 1	8 8	8	8 8	8	8 8	8	8.8	-
9 9	9 9		9.9	9	9 9	1	9	9.9	9.9	9	9	9 9	1	9.9	9	9	9.9	9	9	9 9	9	9.9	9	9	9	9	9 9	1	9	9.9	9[9	9 9	9 9	9	9 9	9	9	9 9	9	9 9	9	9	9 9	9	9	9 9	9	9 9	9	9 9	9	9 9	3
LEN	łb	A	in.	RE	E 4		11	5 1	5 11	12	4.1	8 21	22	17 24	25	26.7	78	75	n	1 2	n,	34 3	が花	11 3	1 3	4	1 42	43	45 1	5.45	41.4	2 43	50 1	1 57	57 5	1 1	5 18	51 1	8.59	51	11	1	54 1	13 51	18.1	68 5	8 14	117	12 11	1.24	15 78	171	18.7	į

Define plot variables

```
misfit = NA_data[:,0]
var1 = NA_data[:,1]
var2 = NA_data[:,2]
var3 = NA_data[:,3]
clrmin = round(min(misfit),3)
clrmax = round(min(misfit),2)
trans = 0.75
ptsize = 40 Python source code
HELSINGIN YLIOPISTO
HELSINGEORS UNIVERSITET
```

What is a program?

10	-F	OP	NT		1	-	-	-	-	-		_		-	-	_	-	-	-	-		-		-		-	-		-		-	-	-	_	_				_	-	-	-	-			-	_	-	-	t		-	-	F	-		-						
LAT																		1			1		1	F	0	E	31	F	1	41	V	E	37	í	T	E	N	E	1	1	1			1														101	EN	TIF	C.A.	no	N
	0	0	Q	0	0	0	1	0 0	0	0	0	0	0			0 1	0 0	0	T	ÍT	0	10	C	T		1	0 0	0	0	0	0 0	0	T	(0	0	0 (0.0	0	0	0	T	0	0.0	T	0	0	0 0	Ū	0	0 0	0	0	0 0	0	0	0	0 1	0 0	1 0	0	8 (11
12	3	\$	5	1				3, 1		19	12	15	18	17	18	19-2	10 2	1 22	23	24 1	15 7	5.27	78	28	32	3.3	12 33	34	35	m.	13	1 29	10 1	1 1	141	41	15.4	5 41	48	15	4.5	11	33	4 1	14	51	58.5	8 50	-	62 1	3.6	1.65	15 5	7 68	-	11 1	17	11	18.7	5 75	11	18.2	1.8
1	1	1	1	1	1	1	1	1.3	1.1	1	1	1	1	1	1	1	1	1	1	1	1.1	1	1	1	1	1	1.1	1	1	1	11	1	1	11	1	1	11	1	1	1	11	1	1	11	1	1	1	1 1	1	1	11	1	1	11	1	1	11	1	1 1	11	1	1 1	11
2	2	2	2	2	2	2	2	2.2	12	2	2	2	2	2	2	2 2	2 2	2	2	2	2 2	2 2	2	2	2	1	2 2	2	2	2	2 2	2	2	2	2	2	2 1	22	2	2	2 2	1	2	2 2	2	2	2	2 2	2	2	2 2	2	2	2 2	2	2	2 2	2	2 2	2 2	2	2 1	27
3	3	3	3	3	3	3		3 3	3	3	3	3	3	1	3	3	3.3	3	I		3 3	3	3	1	I.	3 3	3 3	3	L	3	3 3	3	r	33	3	3	3 3	3	3	3	3	3	3	31	ſ	3	3	3 3	3	3	3 3	3	3	3 3	3	3	3	3	3 1	3 3	3	3 3	
4	4	4	4	4	4	4	6	. 4	4	4	1		L	4	4	4 1	4.4	4	4	4 4		4	4	4	4	4 4	4	4	4	4	44	4	4	64	4	1	4.4	4	4	4	4	4	4 1	44	4	4	44	4	4	41	4 4	4	4 4	. 4	4	41	4	4		4	4	4 4	
5	5	5	5	5	5		5	5	1	5	5	5	5	5	5	5 5	5 5	5	5	5 5	5 5	5	I	No.	5	5	5	5	5	11	5	1	5	5 5	5	51	1	1	5		51	5		5 5	5	5	5 5	5 5	5	5 5	5 5	5	5 5	5 5	5	5 5	5 5	5 1	5 5	5 5	5	5 5	1
6	6	6	6	6	6	6	6 (5 6	6	6	6	6	6	6	6	6 6	5 6	6	6	5 5	5 6	6	6	6	6 1	5 6	1	6	6	6.1	5 6	6	5 (6 [6	6	6 6	6	6	6 1	5 6	6	6 6	5 6	6	6	6.6	6	6	5 1	6 6	6	6 8	5 6	6	6 6	6	5 6	5 6	6	5	6 6	5.6
7	7	7	7	7	7	7	7	1	7	7	7	7	7	7	7	ï	7	7	7	77	11	7	7	7	1	17	7	1	7	7	17	7	7	7 7	7	7	7 7	7	7	7 7	7 7	7	7 [7	7	7	77	17	7	7 7	77	7	77	7	7	7 7	7	7 7	17	7	7	7 7	17
8	8	8	8	8	8	8	5 8	8	8	8	t	8	8	8	1	8.8	8 8	8	1	8 [8	B	8	8		8 8	8	8	8	8	50	i	1	8 8	8	8	8 8	I	8	i I	8	8	8 8	8.8	i	8	8 8	8 8	8	8 8	8 8	8	8 8	8	8	8 8	8	8.8	8 8	8	8	8.8	8
9	9	9	9	9		9	9 1	1 9	9	ŕ	9	9	9	9	9	9 9	9.9	1	9	9.9	9 9	9	g	q	9.1	2 9	1.0	0	9	9 1	1	g	9 9	0 0	T	9 1	0.0	9		0.0	0	0	0 0	1 0	0	0	0 0	2 0	0	0 0	0.0	9	0.0		0	0 0		0 1	0 0	0		1 0	
2	1	1		i				1.1	17	8	11	15	1	1		9 2	1 21	22	11	4 2	5 28	2)	78	N.	n	1.7	'n	32	10	16.3	1.5	-	-	1 41	-	121	5.0	11	14 1	15 5	5.41	5	4.5	2 55	18	1	12.1	10	-	10 1	14	-	4.1	10	10		10	in .		2	7	1 1	

Define plot variables

```
misfit = NA_data[:,0]
var1 = NA_data[:,1]
var2 = NA_data[:,2]
var3 = NA_data[:,3]
clrmin = round(min(misfit),3)
clrmax = round(min(misfit),2)
trans = 0.75
ptsize = 40
Python source code
```

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Python for geo-people

 A program is a detailed list of step-by-step instructions telling the computer exactly what to do

• The program can be changed to alter what the computer will do when the code is executed

• **Software** is another name for a program

What is a programming language?

- A computer language is what we use to 'talk' to a computer
 - Unfortunately, computers don't yet understand our native languages though chat bots are getting better and better
- A programming language is like a code of instructions for the computer to follow
 - It is exact and unambiguous
 - Every structure has a precise form (syntax) and a precise meaning (semantics)
- Python is just one of many programming languages

- Coming up with a specific list of instructions for the computer to follow in order to accomplish a desired task is <u>not easy</u>
- The following list will serve us as a general software development strategy
 - I. Analyze the problem
 - 2. Determine specifications
 - 3. Create a design
 - 4. Implement the design
 - 5. Test/debug the program
 - 6. Maintain the program (if necessary)

Let's consider an example

- As an American, I was raised in a country that uses Fahrenheit for temperatures
 - 70°F is lovely
 - 90°F is hot
 - Water freezes at 32°F

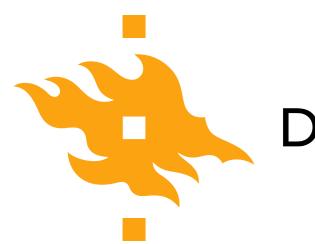
- The problem here in Finland is that I don't always know what I should wear to work when I find weather reports with temperatures in degrees Celsius
 - I think a simple program could help

I. Analyze the problem

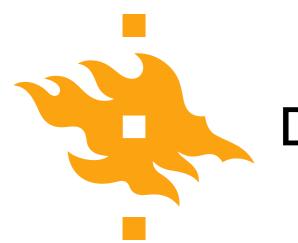
• Before you can solve a problem, you must figure out exactly what should be solved

I. Analyze the problem

- Before you can solve a problem, you must figure out exactly what should be solved
- 2. Determine specifications
 - Describe exactly what the program will do
 - Don't worry about how it will work. Determine the input and output values and how they should interact in the program


3. Create a design

- What is the overall structure of the program? How will it work?
- It is often helpful to write out the code operation in pseudocode, precise English (or Finnish) describing the program. Be specific!


3. Create a design

- What is the overall structure of the program? How will it work?
- It is often helpful to write out the code operation in pseudocode, precise English (or Finnish) describing the program. Be specific!
- 4. Implement the design
 - If you've done a good job with the previous steps, this should be fairly straightforward. Take your pseudocode and 'translate' it into Python

5. Test/debug the program

- Now you can put your new Python code to the test (literally) by running it to see whether it reproduces the expected values
 - For any test, you should know the correct values in advance of running your code. How else can you confirm it works???

5. Test/debug the program

- Now you can put your new Python code to the test (literally) by running it to see whether it reproduces the expected values
 - For any test, you should know the correct values in advance of running your code. How else can you confirm it works???
- 6. Maintain the program
 - If you've written something that will be shared by other users, a helpful programmer will continue to add features that are requested by the users

• What is a program?

• What are some of the steps in developing a program?

• What is a program?

• What are some of the steps in developing a program?

• What is a program?

• What are some of the steps in developing a program?

Zelle, J. M. (2010). Python programming: an introduction to computer science (2nd ed.). Franklin, Beedle & Associates, Inc.

Our first taste of Python

Open a web browser and navigate to <u>https://geo-python.github.io/</u>

Puupyton / Green tree python

46

• We'll continue at 10:40 from the course website at <u>https://geo-python.github.io</u>